
~~~~~

-

AD AOG9 094 MASSACHUSETTS INST OF TECH LEXINGTON LINCOLN LAB F/G 9/2
TWO WAYS TO INTERFACE A MOTOROLA M6800 MICROPROCESSOR TO A MODC——ETC (U)
FEB 79 C E EATON F19628—78—C—0002

UNCLASSIFIED E5D TR 79 29 NC

I o ~U ____

—-

I I
I END

~7

4



0~

-J

C-,



~
,-,
~
w-_ —

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~—,‘~--‘

M A S S A C H U S ETTS INSTITUTE OF T E C H N O L O G Y ~~~~~~~~~~~~
L I N C O L N L A B O R A T O R Y

TWO WAYS TO INTERFACE A MOTOROLA M6800
MICROPROCESSOR TO A MODCOMP COMPUTER

L. E. EATON

Group 94

PROJ ECT REPORT ETS-34

22 FEBRUARY 1979

$

Approved for public release; distribulion unlludted.

L E X I N G T O N MASSACHUSETTS

79 05 25 035

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ~~~~~~~ ~~~ ~~~~

-- ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~

AbS1rRACT

Two interfaces have been developed between a $otorola $6800 micro-

processor and a)IodComp computer . One interface uses a word by word

handshaking—interrupt design to control the main telescope at the GEODSS

ETS. The other interface uses a stringed massage transfer for com—

aunication to the microprocessor development systen. Both interfaces

are described in this report.

AC~j S$iO for
• NTiS White Section

DOC B~lf Section 0
0

• JUST IC ~tTIO~4

BY

• ~~~~~~~~~~~~ c~€S
Oitt. ~~CIM.

_ _

iii

J~•.
—- ~~~ ~~~ ~-

~~
‘

I_ ~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-——-~~~~.—--~~~ —.——— — ~~~~~~~~~~~~~ £,
1~~~ — ~ ~~~~~~~~ ~~~~~~~~~ ~~~~~

TABLE OF CONTENTS

ABSTRACT iii

I. INTRODUCTION 1

II. A BRIEF EXPLANATION OP MOTOROLA’S PERIPHERAL INTERFACE

• ADAPTER 4

A. IN GENERAL 4
S

B. THREE REGISTERS WITHIN EACH CHANNEL OP THE PIA 7

C. THE NO CONTROL LINES OF EACH CHANNEL 8

D. CONFIGURING THE CONTROL REGISTERS 8

III • THE TELESCOPE CONTROL LOGIC ADDRESS BUS , 81—DIRECTIONAL

DATA BUS MID PRIORITY INTERRUPT STRUCTURE 11

IV. WO RD BY WORD HANDSHAKING INTERFACE 15

V. STRINGED MESSAGE INTERFACE 18

A. DATA PROM MICROPROCESSOR TO ?*)DCOMP VIA A SCRAT CH

PAD M~~I)RY 18

B. DATA PROM NODCONP TO MICROPROCESSOR VIA A SCRATCH

PAD M~~ORY 2].

VI. SOFTWARE CONSIDERAT IONS FOR THE TWO INTERFACES 25

A. WORD BY WORD INTERFACE 25

B. STRI NGED MESSAGE INTERFACE 26

I.

V

ii •.~: ::;: _
~—~~

__ ~_~TiLiE ii - _~~~~i_.A~~~~~ -~~

F —.•
~

•- -
~ .-— ~~ -—1~

•
~ ~~~~~~~~~~~~~~~~~~~~~

-
~
•
~
.-•••.-•. . -•.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ - : ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • . •

~~
• • • -.,

I • INTRODUCTION

Two interfaces have been developed at the GEODSS ETS between a

Motorola M6800 microproc essor and a)4odCosp computer . One interface is

a “word by word handsh*k(ng design” , and the other is a “stringed

massage” design.

The stri nged ssage interface is used at GEODSS as the co unicat ion

between the NodComp and the microprocessor that cont rols a 31” Boiler

and Chivens telescope . Th. handshaking design interfaces the ModComp to

Motorola ’s EXORciser (Motorola ’s development system for thei r micro-

processor) .

The two interfaces incorporate two philoso phies of design . The

handshaking interface allows one word at a ties to be transferred between

the two systems. A status bit at the microprocessor and an interrupt at

the ModComp implement th. handshaking. The stri nged message interface

allows the sending device to transmit up to 16, 16—bit words before the

receiving device is required to read the data •

The body of this report is divided into five sections • The first

(Section II) is a brief description of Motorola’ s Peri pheral Interface

Adapter (PtA) and the mode in which it is used at the ETS • The P1k is

Motorola ’s method of interfacin g the microprocessor ’s I/O bus to the

out side world .

The next section (Section III) describes how the PtA’s, the external

telescope control logic , and the I/O software interact . This interaction

is based on the development of an external address and data bus implemented

through the PtA ’s.

1

‘Tii
-

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

~-- ~~—-- -_— —
~~~~~~~~~~~--- -- ——~~~~~-- - -  _~II__~~~



.
~
—.———-—..—.•... 

~~~~~~~~~ ~~~~~~~~~~ ~~~~ 
‘- • — ~~~~-~~~~-‘

- • — ‘ v~~•~•,• •~~~~~~~~ -~~~~~~ -~~.-~-— ~~~~~~~~~ ~~~~~~~~~~~~~~~

This sepa rate external add res.s and hi—directional data bus (separate

from the microprocessor ’s I/O bus) was developed , using the P1k, to

allow the logic to appear to the software as 256 external 8—bit registers.

These registers were used In the design of the controlling logic for a

31” Boiler and Chivens telescope as well as the communications to a

ModComp computer.

Section IV is the description of the word by word interface between

the ModComp and the microprocessor. The word by word interface is uaed

for communication between the EXORci ser and the ModComp. This interface

is used to allow the NodComp to be a replacement for the original

teletype that was the EXORciser’s line printer and data storage medium.

The stringed message interface (described in Section V) is used at

the ETS to transmit information between the ModComp and the Motorola

microprocessor controlling the 31” Boiler and Chivens teleacope.~ This

interface is described as a message type interface because as many as 16,

16—bit words can be transmitted before the receiving unit must read the

message. The interface allows the ModComp to send data in 16—bit words

while the microprocessor reads the data in 8-bit bytes. In sending data

from the microprocessor to the ModComp , the interface packs the 8—bit

microprocessor words into 16—bit words for the ModComp to read.

Section VI describes the software considerations that would be used

by a programme r to implement these interfaces. No attempt is made to

explain the actual software hand lers used.

2

-
—

~
-- -

~~~~~~~~~~~~~~~ ~~~

- 

~~~~=~~~~~~~~~~~
=---=

~~

- —- . ~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

This report attempts to meet two goals. One is to give the reader,

who is interested in an interface between a ModComp computer and a

Motorola M6800 microprocesso r , an overview of two specific types of

interfaces . Secondly , it is hoped that this report describes the interfa ces

7 in enough detail so that the reader obta ins a basic understanding of the

design at the ETS. Although the reade r will probably need logic prints ,

their inclusion in this report would be cumbersome . Consequently , block

diagrams and verbal descriptions have been used as substitutes for the

prints. Also, each section refers to the appro priate logic prints that

are filed at the GEODSS ETS site.

3

~~— —-- _ _ _ _ _ _ _ _

-- -

II. A BRIEF EXPLANATION OP MOTOROLA’S PERIPHERAL INTERFACE ADAPTER

A. IN GENERAL

Motorola ’s Peripheral Interface Adapter (PtA) , MC6820 , is an IC

that interfaces the microprocessors I/O bus system to the outside world.

Although a very detailed description of the chip is given in thë Motorola

Application Manual, a brief description of its functions is given here,

based on how the P1k is used in our system.

Motorola ’s microprocessor system does not have any I/O instructions .

Instead, all peripheral IC’s, such as a PIA, have a unique location in

core.

Each PIA has two 8—bit peripheral register channels with two associated

8—bit control registers, so that a PIA appears as 4 memory locations in

core. Also accessible within the PIA is a Data Direction Register

(DDR). This register is used to define the 8-bit data lines as either

inputs or outputs. There are also two control lines for each channel on

the PtA. The A (B) channel uses CAl (CB1) and CA2 (CB2). The PtA’s
* configuration prejudices the user to define channel A as an input channel

and B as an output channel. They are used this way in the GEODSS system.

The PIA’s are used in both the EXORciser interface design and the

telescope interface design to perform four functions:

1. Input data from the external logic

2. Output data to the logic

4

________________________ ____________________

.,w_ rN! ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~‘ ‘ V t~~ ~~~~~~~~~~~~~~~~~

3. Input a 3—bit priority interrupt number

4. Output an 8-bit logic register address

These functions need two input channels and two output channels and

thus two PtA ’s were used.

Table 1. gives the core locations where these channels ar e configured

in the ETS system , along with the software anemonic used in the telescope

control program. It is advantageous to use a anemonic to allow the address

of each PtA to be defined only once in the program. Figure 1 is a block

diagram of the P1k illustrating the above .

TABLE 1

Address , Software Mnemonic , and Register

Description of System PtA’s

SOYNARE
ADDRESS NN~~~NIC REGISTER

$7118 INDATA PtA 11, Chan A periph reg or DDR

$7179 PIACIA P1k #1, Chan A ctrl reg

$7FFA OUDATA P1k #1, Chan B periph reg or DDR

$7FPB PIAC1B P1k Il, chan B ctr l reg

$7FTC INTREG PtA #2, Chan A periph reg or DDR.

$717D PIAC2A PtA #2 , Chan A ctrl reg

$7f lE ADRBUS PtA #2, Chan B periph reg or DDR

$7111 PIAC2B PtA #2 , Chan B ctrl reg

5

~~ ~1 I ~~~j_~~~ - - ~~~~~~~~~~~~~


~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ -

ETS—34 ( 1) CONTROL LINES CONTROL LINES

DATA TO/FROM I 4 DATA TO/PROM 4
PERIPHERAL I I PERIPHERAL

____ -— 
4s

GL1 CA2 CE

PERIPHERAL DATA PERIPHERAL DATA

REGISTER A REGISTER B

I TA DI
IECf ‘°T T t I DATA DI~~Cf 

ION REG B

O — t N P ~Tr
i— otrrPur .

I C(~ TBOL REGISTER A I I CONTROL REGISTER B 1

REG SEL , R/W 
— —

CETP S . ENAB IROA I B

MPU DATA BUS TO NPU TO NPU
TO ADDR DEC

WGIC

Pig. 1. Block diagram of Peripheral Interface Adapter (PtA) .

6

--.-~ ---- - -~ 
- 

~~~~~~~~~~~
- -

~~~~~~~~~~~~~~~ 
- --

~~~~~
-

~~~~~~~~~~~~~

- ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~~~~~ ~~



- ,—..., -.~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ - -_~ ~~~~~~~~~~~~~~~~~~ r -’  ‘—‘-- -~~~~

B. THREE REGISTERS WITHIN EACH CHANNEL OF THE PIA

1. Peripheral Register — This is the register that either

inputs or outputs data (depending on the state of the DDR) from/to the

outside world.

2. Data Direction Register (DDR) — This register defines the

direction of each of the 8 peripheral register Lines as being input or

output lines (1 — output, 0 — input).
I

3. Control Register — This register is used to control the

various functions of the P1k. It allows the software to do the following:

a) enable/disable interrupts within the P1k

b) access the DDR

c) determine if an interrupt has occurred on a P1k

d) define the state of one of the hardware control lines

to be in the pulse mode, bit 3 following mode, or handshaking

mode

e) set the other control line so that an interrupt occurs on a

low—high or high—low going edge.

As a note — each half of a PtA looks like two core locations to the

software. But there are 3 registers that can be accessed by the software.

The peripheral register and the DDR have the same address. The control

register has the other address. Whether the peripheral register or the

DDR is being accessed is determined by the state of bit 02 in the control

register. If —

bit 02 0 : software can talk to DDR
— 1 : software can talk to peripheral register.

L -~~

I . 
_ _  

~~~--~~~~~~~-- -  - - 

_ _ _
_ _ _ ~~~ ~; ; J~~~ . - ’ ~~~~~~ - • - ~~~

•_ - ~~~~~~~~~~~~~~~~~~ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — .-—.

C • THE TWO CONTROL LINES OF EACH CHANNEL

Each channel of the P1k has two control lines CAl (CB1) and CA2

(CB2). These lines are used for various modes of interfacing to a

peripheral device. The particular mode is determined by the control

register . For our application, the PIA’s are configured in the so—

called pulse mode of operation. That is, on control line 2 a pulse

accompanies the data upon output to channel B (CB2). A pulse also

occurs when data are input from channel A (CA2). Thus, the external

logic has a pulse associated with the data during I/O operations. The

logic calls this pulse a data sync pulse (DSP).

The other control line is configured as an interrupt control. For

our system, It is only used in the one PtA that is interfaced to the

priority interrupt logic . This interrupt is simply passed through the

PIA to the Th~ input of the microprocessor.

D. CO~1IGURING THE CONTROL REGISTERS

As previously stated, PtA ’s can be configured In several modes, all

of which are described in detail in the Application Manual and the

* Microprocessor Course Manual. However , only the pulse mode will be

described here. This mode sends a pulse on control line CA2 (or CB2)

when the software does a read (or write) to the particular P1k. This

pulse indicates to the logic that the data Is valid (for OUTDATA and

ARDBUS) or that the data is being read (for INDATA and INTREG). For

this configuration, the control register bits 3 — 5 are set as follows:

bit 5 — 1

U -

8

U -~ — ~~~~~~~~~~~~~~~~~ ~~~~~

—

U ~~~ ~
.—U

~~~
U--U -_ - U

~~~
- — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - .

bit 4 — 0

bit 3 — 1

Control lines CAl and CB1 are used as interrupt line.. For an

interrupt to occur an the low to high transition of a line, bit 1 of

the control register must be 1. Enabling of the interrupt is controlled

b y bit O.

bit i bit O
-

1 0 low to high transition (bit 1 — 1)
of CAl (CM) interr upt disabled
(bit 0 — 0)

1 1 low to high transition (bit 1 — 1)
of CAl (CB1) interrupts enabled
(bit 0 — 1)

The ETS system uses control line CAl on PTA #2 as the only interr upt

to the microprocessor CPU. Bit 7 of the PIA’s control register will be

set to 1 when an interrupt occurs . This is passed on to the MPU’s IRQ

line causing it to go low. The software ’s interrupt handler must then

read the data from the PtA (INTREG) to determine which level caused the

interrupt . This read will clear bit 7, allowing another interrupt

sequence to occur .

The Data Direction Register (DDR) is accessed by setting bit 2 in

the control register to 0. Then , instead of addressing the periphera l

register, the DDR will be addressed. Setting all l’s in the DDR defines

the peripheral register as an output register and all 0’s defines it as an

input register.

9

_ — - - - ~~~ - - .~~- ----: - - - _--.-

— - — _________ . - - - .‘ , -~~~~~~ , - ~~
.
- .~‘- - -

.
- —

~~~

- ——-- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


-----., -- .—- -..- ,.— —-----———~~.- --.——— .

~~~~~~~~~~~~~~~~~~~~~~

The following initialization program will put the PtA’s in

the proper configuration f or the ETS hardware.

ORG $1118 LOC OF PIA’S

INDATA fiNE 1 - PIA1A per reg or DDR ($7118)
PL&ClLk RMB 1 PIA1A ctrl reg ($7119)
OIJDATA RMB 1 PIA1B per reg or DDR ($7FFA)
PIAC1B fiNE 1 PIA1B ctr]. reg ($7118)
INTREC RMB 1 PIA2A per reg or DDR ($71FC)
PIAC2A RMB 1 PIA2A ctrl reg ($7FFD)
ADREUS RMB 1 MATh per reg or DDR ($7118)
PIAC2B RMB 1 PIA2B ctrl reg ($711?)

ORG $XXXX
LDAA #$Ø select DDR for all PIA’s
STAA PIAC1A
STAA PIAC1B
STAA PIAC2A
STAA PIAC2B
LDAA #$FF define DDR as output
STAA ADRBUS f or ADRBUS and OUDATA
STAA OUDATA
LDAA #$0O . define DDR as input
STU INDATA for INDATA and INTREC
STAA INTREG
LDAA PRDI~~M define all PtA’s as -
STAA PIAC1A sd per reg (PR), disable m t
STAA MAClB (DI) and pulse mode (PM) -

STAA PIAC2A
STAA PIAC2B
END

PRDIPM FCB $2E Sd periph reg (PR) , di. iitt (DI),
Pulse Mode (PM)

PREIPM FCB $21 Sel periph reg (PR) , en m t  (El),
Pulse Mode (PM)

I

I

10

— _________ -- -- 

~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- —

~
--

~~~~~~~
-~~~ - - ~~~~~~~~~~~~~~~~~~ ~~~~~ ~



r ~~~ 

- .  -

~ 

- - - -

III • THE TELESCOPE CONTROL LOGIC ADDRESS BUS , lI—DIRECTIONAL DATA

BUS AND PRIORITY INTERRUPT STRUCTURE

The interfaces between the Modcoup and microprocessor evolved from

the generalized logic design for controlling the loller and Chivens 31”

f . telescope. The philo sophy of this design was to build a versatile

enough interface so that modificatio ns and improvements could all be

done within the software. In general , the design uses two PIA ’s to

create an external address/bi—direction al data bus system. One PtA

channel is used to create an 8—bit address bus capable of accessing up

to 256 external 8-bit logic registers. Two other channels input data

and output data. The last channe l is used to inpu t a 3—bit priority

interrupt code.

The data are transferred on a tn —state bi—directional data bus.

One channel of the P1k inputs data from the bus, and the other channel

output s data.

Figure 2 gives a block diagram of the interface logic . To the

software , the logic appears as 256 , 8-bit registers. These registers

are accessed by the software storing an 8—bit number to the Logic Address

P1k (ADRBUS). This 8-bit code becomes the address for one of the registers.

If it is an output type register (microprocessor to logic) , that register

will be enabled to accept data from the tn —state bi—directional data

bus. This data will come via the Output PtA (OUDAT A). If the selected

register is an input type register (from logic to microprocessor) , then

only that register will place its data on the bus for a subsequent read

via the Input PtA (INDATA) .

11

____ ~r— — --U. ——,-~~- —

__________ ~~~~~~~~~ . _ • _  -U~~•~ ~~~~~~~



- - 
~~~~~~~~~~~~~~~~~ ,— -——--- U—U-—-’— - - U - -  r— ’---’U-’-—-~~~ r- ’--—-- .,- ---—-~~-- - — ~~~~~~~~~~~~~~~~~~~~~~~ n—-U-—U—U-U-. — S  U ~U-U-~~ U- ~~ W-U-UU-~~U-

1i~~~~

‘
¼

~~~
..J ! 1~iIA

_ _  

~ 1 
— 

~~ ~~~~

~ h t~‘1 ~ ~~~~~m 
~~~~~~~~~~~~~ _ _ _ _  

• ~~~~~~~~~~— — 0

~I) ~~

~ I ! • ~~~~~~~~~~~~~~~~

~~ I I-I .~~ V lII ~~ U

_ _ _ _ _ _ _ _ _ _ _ _

I

*

I

~~~~~~~~ ~ 

~~~~~~~~~~ r!~~~!1 ~ I
~HH H E~i~1

~1I1I
_ _ _ _ _ _

12

L .

~

. ~~~~~~~~~~~~~~~~~~~~~~~~~

r r ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~
- -U -

S - - - -

Each t ime a word is input or output • the address bus is incremented

by 1. This allows successive registers to be accessed without sending

a new address to the ADRBUS PIA. This increases I/O speed considerably.

- The priority inter rupt str ucture is shown in Figure 3. The structure

interf aces an 8 level priority scheme to the MPU Ig level. One channel

of the PtA is dedicated to these interrupts .
S

The software can be interrupted on any one of 8 levels (level 0
being the highest priority) . These levels are decoded into a 3—bit

code . The interrupt is sent to the PTA (INTREG) and then transf erred

on to the MPU , ThQ level. The software then inputs the 3—bit code

from the interrupt PtA to determine which level interrupted the

system,

These interrupts are enabled and disabled by the software storing

data into the enab le register which is one of 256 registers in the

system.

I :
13

_ _ _ _ _ _ _ _ _ _
- - - T~~~~~~~~~~~ ’-~~~

________ - -I
~~~ ~---U

--U 
-U ._

~~~~
_

~
__•_ —-U .—.---——‘~~~~

.
— — ~~~~ ~~. .JS•~~~~~ A . .~~~~~~~~~~ ’ ~ ~~

-U

‘ —U ~~~~~~~~~~~~~~~~~

S — s -r- r’ ~U-~n-_!U U -UU-U-W-U~~UU-UUU-

i ’ ~~~~—
~~~~1iL1

~ zo o  I ~ •1•1

_1 I.’ .J~~~~Z a.
I 

f1~

4 jr_ S 
III I

- 

JL~ ~
II,’  I - I

A 
-

~~~ 
_ _ _ I1

- S

I
U

14

L~~~~-~~~~~~ U~~~~LJ~J 1-ITJ~~~~~~ ~~~~~~~~~~~~~~~~~~

1 — - —-

~

-
~~~~~~~~~~~~~~~~~~~~ 

- _ _~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~n-~~~~~ _ .-~~~~~~----U-- ’U-—— -_~~~~ n- -U-UUU-S~~~ -U

IV. WORD BY WORD HANDSHAKING INTERFACE

This interface is a one word (8 bits) type transfer between the

ModCo.p and the microprocessor. The handshaking is done by an interrupt

at the ModCoap and by status checking at the microprocessor. Figure 4

shows the block diagram.
S The register type interface to the microprocessor described in

Section III , is used to define an input register, an output register and

a status register for the data transfer. The word by word interface was

incorporated to allow the EXORciser to use the ModComp as a peripheral

device. The EXORciser receives source code, etc., from the ModComp and

sends object code and listing information to the NodComp. A slight

modification to the Motorola EXBUG I/O software was made to adapt this

interface.

The ModComp computer interfaces to the outside world through a

system called an Input/Output Interf ace Subsystem (Ib IS) . This is a

very straight forward design. Each Ib IS channel can be configured as

an input (16 bits) or output (16 bits) with an associated sync pulse.

There is also an interrupt coupler card which allows external interrupts

to be coupled to the Nodcomp.

For the word by word handshaking interface one 16—bit channel is

used for an input channel and one as an output . Only the lower 8 bits

- . are used since this is the word size for the microprocessor.

Ib IS channel 11 is used to send data from the ModCoap to the

EXORciser. This is an output channel. The ModComp sends 8 bits of data

(8 LSB’s) when it is interrupted on h OTS Data Interrupt 1. The vectoring

____ 
- -  

15 

~~~~~~~~~~~~~~~~~~~~ -

—a--U--— U-U- UU.U~~~ -~~ U-~U*S ~~IIlL• ~~ ~~~~~-S ~.UU~U.U • U•S~~~ ~~~~~~~ .~~~~

—

~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~ 
-U--- - . S— U---- -SU- - -~~~ -U~~~ ~~~~~~~~~~~~~~~~~~~~~ -~~

- 1. -

~~

. ;

I h i  ~

.4 I. 0

ri~ 14
‘-4 0

p ~ I.,

‘-S ~fl .~~ I -
a.
S

_ _ _ _  ~~~~ ~~~~~~~~~~~~

_ _  

_
~

_
~~u _ 

_ _

1 
_ _ _  _ _ _  

~~ ~~1; Lr~ 
~~~~~ 

coi
~

:

~~~ ~~— 
.-4 I-.~~~U.4

0 ~~m m.o .
~~ ‘*.4 0

.~~ .~~ ~~~~~~~~~

16

_ _ _ _ _ _ _ _  - -  _______ ‘. .-

-U U— .— - - -U ~~~~~~~~~~~~~~ -



— U-,—,-_-_--yr .__ — W~’”~
5
sU — n’U.,c.wU-r — -?-U•U-U-U-

location within the )IodCoap is core location #Al (# hex) . The interrup t

comes when the microprocessor reads the Last word sent.

When the )4odComp is to receive data , it does so through channel. 12

(an input channel) and is alerted by receiving an interrupt on Data

Interrupt 2. The ModComp vectoring location is found at #A2 . The

interrupt occurs when the microprocessor sends a word.

There are three of the 256 external registers used at the microprocessor

as the transfering registers. Register #0] . is used to read data from

the )fodCoap, and register #02 is used to send data to the ModComp.

Register #00 is used as a status register to tell the software when to

send or receive data.

The microprocessor can read data (from reg #01) whenever the LSB in

register #00 is a 1 (status is good) , indicating the l4odCcvip has sent a

word. By reading the data, the LS) l.a changed to a zero (status bad) .

The bit goes good again when the l4odCoiip sends another word .

The microprocessor may send a word to the ModComp whenever the MSB

* 
in register 00 is a 1 (statu e good) . Upon sending a word to register

02 , the NodComp is interrupted, and the status bit is set to a 0.

When the NodCoiup reads the word , the status goes good (i.e., MSB reg #00
— 1), and the microprocessor can send another word.

The interrupt/status arrangement is an invert type interface. That

is, when the microprocessor status is good it may send data. When it does

send data , the status goes bad and the I4odComp is interrupted.

The logic prints for this interface can be foumd on prints titled ,

REt , AICN-ll and AICN—12 .

17

L_J~ L~~~~1~~ _ _  _ _ _  ~~~~~~ 
-

~~~ 

-
_ _ _ __ _

— ~~~~~~~~~~ U~~~~~~~~~~~~~~~~~ U-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

U U •
~~~~

S
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

V. STRINGED MESSAGE INTERFACE S

This interface is used to send telescope data to the ModComp and to

receive comeande from the ModComp. -

The same address/register interface is used at the microprocessor as

described in Section III and the IbOIS on the ModComp is used for data

input and output (one channel for each) .

The basic design incorporates a scratch pad memory (SPII). For each

direction up to 16, 16—bit words can be stored in a SPI’! before the

receiving device reads the data. These two 16 word by 16 bit SPM ’s

appear to the microprocessor software as 32 input type registers and

32 output type registers of the 256 total registers described in Section

III .

The logic diagrams for this interface can be found on the prints

titled AICN—8B, AICN—98, TIB—4 and PCC (TIB—6).

A. DATA PROM MICROPROCESSOR TO )VDCOMP VIA A SPM

Figure 5 shows a block diagram of the transfer of data from the

microprocessor to the SPM and then on to the ModComp. The SPM is the

central tie point. The design packs the data from 8—bit words out of the

microprocessor to 16—bit- words into the ModComp.

1. Output from the Microprocessor to the SP1II

Since the SPM is 16 words x 16 bits long, and the microprocessor iè

an 8—bit word, the SPM appears to the microprocessor as 32 hardware output 
•

type registers. The starting address is $E0 (end — $FF) .

Since the Modcomp has to read the same memory , to avoid conflict

it was decided to let the microprocessor have control of the memory at

- - 18

— _ _ _  
_ _ _  

- -- - - _
~~~~~~~~~~ 

~ a-’—~-—U--- — _ _:~~~~

_ ~~~~ - - ~~~~~~ —~~~~~~~ ---~.--- .. —S-~ -.’-----a—- ~~~~~~ — ~~~~&~~~~~~~~~~~~ _U~~~~~~~~~~

--U- -U ,U-—-U- --- - -~~~~~~
,,

~~~~~~~~
-—- .

~~~~~~~~~~~~
U- - -

~~~~~~~
-U—-—U-. ~~~ 

- -U
~~~

S_ -~~~~~~~~~~ -~~~ -U,

Is
-

~ 1 I’
b’- ’ 9v ~.4 5

•5 -5 . Is_,q
~~~~~ S

a
a

C 
- 

— ‘0 0 0

N: Ii~ 
I

H: 

~~~~~~~~~~~~~~~~11
19

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~t. . - ; - :-~
— —----—-- -U U-

~~~~~
U-U

~ —- ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~
U-

~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
•á•~~I~U ~~~~~~~~~ _____



U- S-U-U~~~~~~~~~~~~~~~~~~~~ 
U-U ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- , S - - -

~~~~~ 
-‘

~~
- --‘- -

~~~
--

~~~
- -,

any time. The ModComp will not read when the status to the ModComp is

bad which will be when the microprocessor is writing. The status will

be bad any time the address bus has a $E0—$FF on it.

The 8 bits of data from the microprocessor an multiplexed into the

2 , 8 bit SPMs by the LSB of the register address bus . This is done by - -

putting the LSB straight to the chip select (CS) of one SPI4 and inverting

the LSB before going to the second SPM. The next 4 LSB’s become the

address to the memory and will only change for every two words sent to

the SPM’s.
-

The address to the memory comes from the microprocessor (when it

writes to the SPM) or from a counter (which the ModComp increments) when

the ModComp reads the data. This address is ja m loaded into the counter

when coming from the microprocessor. The jam loading is controlled by

the status bit . If the l4odComp has control , the load input is high, and

the counter can increment. The ModComp starts reading the SPill from

address zero because when the microprocessor is through writing , a one—

shot is fired which clears the counter and sets the status good.

Even though the SPM is 16 words]ong, the ETS design only uses 15

words (30 for the microprocessor), because the ModComp has only 15

general purpose registers. The one—shot that clears the counter and

sets the status good again , is fi red upon a decode of address SPE.

2. Input to the ModComp from the SPM

The ModComp reads the SPM when the status to channel 8 (input) is

good. The ModComp checks the status before reading the data. If the

20

_ _ _ _ _ ‘U- ~~~~~~~~~~~~~~~~~~ ~~~~~~~~ -~~~~~~~~~~~~~~~~~~~ --~~~~~~~~~~~~~~~~~~~~~~~~~~
-
~~~~~



— ~~~~~~~~~~~~~~~~~~~~~~~ ~~ _~U~
_ •_S~ 

U SU~
_ U_U__UU~-U ~~~~~~~~~~~~~~~ — ~~~~~~~~~~~~~ ~~~ ~~~~~ ~~~~~~~~~~~~~~~~~U - - -

status is good , it proceeds to read the 15 words. The status is also —

checked after the data has been read by the ModComp . If the status is

bad after the transfer , the ModComp ignores the data , waits for the status

to go good, then rereads the SPM. The ModComp w~.1l read the SPill in the

bur.~t mode (15 successive reads , non—interrupted) . This takes approximately

22 us. The microprocessor takes longer to write new data and thus a status

check after the burst mode read will indicate if the microprocessor is

writing data.

The SP)I address counter will always be left cleared by the micro-

processor. Therefore , the ModComp knows that the first word read is in

locatIon 0. When the counter gets to 15, it is automatically cleared

back to 0. It is incremented by one for each read.

B. DATA FROM MODCOMP TO MICROPROCESSOR VIA SPill

Figure 6 shows the block diagram of the transfer of data from the

- 
- 

ModCoap to another SW and then to the microprocessor. The 5PM is again

the main tie point and allows the data to go from 16—bit words from tI~

ModComp to 8—bit words into the microprocessor.

1. Data f rom the ModComp to the SPIll

For this direction , the ModComp is allowed to send data if the status

to I/Ohs channel 9 is good. This will be true if the microprocessor has

cleared the status (interrupt) flip—flop .

The address to the SPM is multiplexed by the decoding of the address

bus for addresses $40—$5F . These are the 32, 8—bit registers that the SPM

represents. If the microprocessor is not selecting these registers, then

the ~ i1tiplezer will allow a counter to address the memory . This counter

_ _ _  _ _  - -

- - 
_ _ _ _

c - ’,
U 

- - - — L~~~~~— ‘ k- ~~~~~~~~IdU 
— 

~~~~~~~——— U— ~~~~~~~ 
—

~~~~~~~ 
5- -U ~~~~~~~~~~ _-UU,__&_~~_ 

— - 
-U-’— U-- -

~~



f _

~__.~~~~~ U~U U - UUS U-U-U ~~~~~~~~~~~~~~~~ U-U- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘~~~‘ UU ~~~~~~~ _~~~~~S S ~~~~~~ ~ S -UUS•-U-U ~~~U- 5--UU-UU ~~~~~~~~~~~~~~~~~~~~~

- 

S 

U

I ~~~~~~~~~~~~ r~i ~
- 

L~~~7~\_~~J ~~

‘

_ 
_ _  

I
~ 1~

&H_ 1: 
_ _  1~~

!
* + —‘I’-—

:

-5- -U~~•~~~~-U~~~~U•U5-U-_U-U_~ -



U U-U-U- U-UU-~~UU-U UU- - U U5- UU

is incremented by the I/O sync pulse aaaociated with the output data

from the IlodComp. The address starts at 0 because the counter is kept

cleared by a re—triggerable one—shot. The clear is h f  ted upon the

first word sent from the ModComp. The ModComp must send the data in the

so—called burst mode, which means uninterrupted words at 1.6 ps apart.

The one—shot has a 4 pa time out so that 4 ps after the last word is

sent, the counter will clear back to 0.

When the last word is sent, the Q side of the one—shot will set the

status—interrupt flip/flop, interrupting the microprocessor and setting

the ModComp status bad (—0) .

The interrupt indicates to the microprocessor that the SPM has data

to be read. After the data are read and processed , the microprocessor

- 
- 

will clear the status flip/flop alerting the ModComp that it may send

more data.

2. Data from the SPill to the Microprocessor

When the microprocessor is interrupted , it will read the data from

the SPM as though the SW represents registers $40—$5D. Thus, the first

8—bit word will be read by the microprocessor putting a $40 on the

address bus. This will switch the multiplexer to steer the address to

the SW from the microprocessor address bus . The LSB of the address bus

will go to the chip select of the SF11. One SF11 will have this line

Inverted. So when register $41 Is selected, the opposite SPM will put

data on the data bue. The next four bits will go to the address lines

of both SPill’s. These four bits will only change after every two reads

by the microprocessor.

- 23

ii— 
— -— —U--—— -  5- — U— 

*~~~ l*~~~

“U— U

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ 
—.—~~ -U-.—- ~~~~~~~~~~~~~~~~~~~ —-—-~ U- --

~ 5 5 ’

-- - ~~~~~~~U- 5

Again, the LSB of the microprocessor register address controls the

chip øelect, thus enabling only one SPill per word read by the microprocessor.

The next 4 address bits go to the address lines of the SW and will only

change after every two reads by the microprocessor.

For the telescope system at GEODSS, it has been decided that when

the ModComp software has sent a burst of data, it will make the last

word a #FFFF. The IFFFF indicates to the microprocessor software that

the rest of the data in the SW is not valid for this message.

After the microprocessor software detects two successive SPY’s (the

first being on an even register address), it knows that this is the last

word sent by the ModComp. It will then process the data and finally

clear the status flip/flop, indicating to the ModComp that more data can

be sent. Although not specifically shown in the block diagram, the

“clear status pulse” is generated by the microprocessor selecting register

$5F and output anything to it • The logic address bus will no longer be

sitting between $4O—$5E. Thus , the “enable memory address” (signal from

the decode logic) will switch the address multiplexer to the ModComp’s

control.

S

24

- - - U --

S
- U - - -U-- -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~5-— ~~~~~ _~~~~~~ Ul~ 5tk51 .~_-._ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘,._ ~~~~~ ‘-  ._  
~ —-



U--- - -. -‘~~~~~~~~ :,-~~,-- - - U- ~~~~~~~~~ U- U-U-UU- U-U’~l-U ‘5-
~~~

VI • SOFTWARE CONSIDERATIONS FOR ThE TWO INTERFACES

A. WORD BY WORD INTERFACE

The interface between the EXORciser and the ModComp uses channels 11

and 12 on the 1/OIS. - ModComp to EXORciser is through channel 11. This is

an output channel. EXORciser to ModCoinp is through channel 12 which is an
*

input channel.

1. EXORciser to ModComp

When the EXORciéer is sending data to the ModComp, It does so with

interrupt handshaking. It sends an 8—bit word to logic register $02,

interrupting the ModComp on the I/Ohs Data Interrupt 2 at vector location

#A2. The status to the EXORciser is set to 0. The status is determined

by reading register $00 , MSB bit. It is a 0 when the data has been sent

to the ModComp and goes to a 1 when the ModComp reads the data. The

llodComp Initializes this àhannel by doing a dumey read from channel 12

before enabling the interrupt. The 8 bits of data are in bits 08 — 15

of the ModComp, with bit 08 being the MSB.

2. ModComp to EXORciser

The EXORciser reads data sent by the ModComp whenever the LSB bit

in hardware register $00 goes to a 1. This indicates that the ModComp

sent a word. The EXORciser loops on testing this bit until the bit goes

to a 1; then it reads the 8—bit word the ModComp has sent . The EXORciser

reads this word from hardware register $01. Upon reading this data, the

ModComp is interrupted through Data Interrupt 1 on the I/OIS. The vector

location for this interrupt is #A1. If the ModComp has more data to send ,

25

-—

—

________ _________________ U~lU*A~ U . . . ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~
-U-- ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ -J,s•~

_sU-U-;
~

U-U- _,~ 5 - - - U U - _~~~~~~~~~~~~~ 5- S ’~

it may do so. Otherwise, it will ignore the interrupt. The status to

the EXORciser stays bad until the ModComp sends another 8-bit word. The

data is sent through channel 11 with the 8 bits being in bits 08—15, bit S

08 being the MSB. The channel is initialized by the EX R iser doing a

dumey read from register $01.

B. STRING ED MESSAGE INTERFACE

This interface uses channel. 8 (input to ModCostp) of the I/OhS and

channel 9 (output from ModComp) for transfer of data.- -

1. Data from ModCoap to Microprocessor

To send data to the telescope, the IlodCoinp software first checks

the status of channel 9. If it is good (—1), then it sends data (up to

15, 16—bit words) to the microprocessor. It must send the data in the

burst mode (successive outputs with interrupts disabled). The last word

sent will be all l’s. After the last word is sent, the microprocessor

will be interrupted, at which time it selects register $40 and reads

data until two successive $FF’s are encountered. The first $FF must be

on an even address. Two successive $FF’s indicate an end of transmission

*
of data. The microprocessor processes this data; and when it is ready

to accept more data, it clears the status to Ib IS channel 9 by outputting

anything to register $5!. Clearing the status allows channel 9 to send

more data.

2. Data from Microprocessor to ModCoi~p

To receive data from the microprocessor, the ModComp reads the data

from I/OhS channel 8. It does so by first checking the status. If it

26

—U-— —

U-

- - ________ — U- _______________________________

U- U~~~~ S~~~SUU — ~~~~~~~~~~~~~~~~ 5-U-, — —‘—5- 5~

- — ~~~~~~~~~~~~~~~~~~ ~~r-~~~~~~~’
-

is good (—1), it reads 15 words in the burst mode (successive input data

instructions with interrupts disabled). The status is again checked.
-

If the status is now bad~ the data is ignored. The procedure is repeated.

If the status is good-, the data is assumed good and is processed.

The microprocessor will send 30,8—bit words to the SF11 by fiz~st selecting

register $E0. The data can be sent at any time, since the microprocessor

has precedence over the interface. Thirty 8—bit words will be sent out.

During this time, h/Ot~~ch~nne1 8’s status will go bad. It will go good

S when address register $FE’- is selected. Since the register address bus is

incremented after each data word is sent by the microprocessor, the soft-

ware does not have to keep re—selecting a new register address.

S

27

~

- -

—~ -
- - - ~~~j4~’i~â g -

— ~~~ _S_ ___ _5 ~ UU SU UU~~~U U- U~U~U S U U•-~~J~~ _,S U-U-*_ 5-5-5-~~~~ _~~, ,~~~~~~I

- - ___~~5-U5~~~~~~ -U.5 S -UU--U~~USW5-~~U-U- ~~~~~~~~~ -~~~~~‘UyU-~~~~~U- U- ’ :

-
- --—U-

~~~~
- -, 

~~~
-- - - -— ,— - - -U---

~~~~~~~~~~~~~~~~~~~~ 

‘U- -

~~~

UNCLASSIFIED
SECURITY CL ICAT ION OF THIS PAGE (5%.. DaM Ei.S.r.d)

REPORT DOCUMENTATION PAGE BE~~~~~~~~~L~TING PO~~
E -‘l 2. GOVT ACCESSION NO. 3 RECIPIENT S CATALOG NUMBER

8
E~~ -79-2fl

TIE (..d SubWlc) . TYPE OF REPORT cOVERED

—
C ~~~~~~~~~~~

_ _ _ _ _

_ _

~~~~~ 
THOR(s) TRA CT OR GRAM Ru eW.)

(~~~~~~~~~~~E.j~~ion (~~~~~~~%28 7~~~~~~~~ 
/

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT . TAS1C
AREA & WORK UNIT NUMBERSLincoln Laboratory. M.I .T.

P.O. Box 73 ~~~~~~\ 
Program E n o. 6342SF

Lexington, MA 02173 ( /~)i’.iJ_ U - IL 212

fl CONTROLLING OPPIC~ NAME AND ADDRESS REPORT —
~~~~~ —~~

Air Force Systems Command, USAF 1// 22 Feb~~~’1 79I
Andrews AFB S

Washington. DC 20331 3. NU~~~ER OF PAGES

14. MONITORING AGENCY NAME I ADDRESS (if diff.rsas f r om CoasivU lag Of/Ic.) 15. SECURITY CLASS. (of Al~ rspo~i)

Electronic Systems Division /
‘~~~~~*~

~~~~7~~~~~~i 
Unclassified

Hanscom AFB 3ty i __________________________
Bedford, M A 01731 iSa. DECL ASSIFICATION DOWNGRADING

16. DISTRI BUTION STATEMENT (of ahi. R.posl)

Approved for public release; distrihudon unlimited.

17. DISTRIBUTION STATEMEN T (of ski iba*,act iisL.r d Iii 8E..S ~i. if dlfJ.r.ist from R~~on)

IS. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Co.uss,s.. 01~ rei’~,a. ui. If a.c.aa~~ si ii.asAfr b7 block upa,&a,)

Interfaces microprocessor Modcomp

~0. AB SIR T (CaMia.. .. ,., r.a ui. if su.uuy iii iiuli/y h~ block a.mSar)

o interlaces hive been developed between a Motorola M6800 microprocessor and a
ModComp composer. One interface uses a word by word handshaking-Interrupt design to
ccotrot tim main telescope at the GEODSS ETS. Tim other Interface uses a stringed message
trsaskr for comnvintcados to tim microprocessor development system. Both interfaces
are descibed In this report.

DO ~~‘, 1C3 IDIT1ON OP I NOV 65 IS OBto LITE UNCLASSIFIED
stcum~v CLASIIPICA7ION OP THIS PAGE (1%.. Das. ias.r.d)

_ _ _ _ _  - - 

U S

___ — - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
U-

